

Comprehensive evaluation of cell-type quantification methods for immuno-oncology Gregor Sturm

Experimental Bioinformatics, Technical University of Munich

Pieris Pharmaceuticals GmbH, Freising

Type and abundance of immune cells in the tumor microenvironment affect outcome.

Fridman, W. H., *et al.* (2017). Nature Reviews Clinical Oncology. doi:10.1038/nrclinonc.2017.101

Computational methods can estimate cell type abundance from bulk RNA-seq data.

But ... which method should I use?

'Deconvolution', as opposed to 'marker gene-based' methods allow to compute cell fractions.

Marker genes: list of enriched genes for each cell type

Between-sample comparison only!

Deconvolution: 'inverse' matrix multiplication with reference-profiles

Finotello et al. (2018). Cancer Immunology, Immunotherapy. doi:10.1007/s00262-018-2150-z

EPIC and quanTlseq are the only methods to compute cell fractions.

Marker gene-based			•	igh S Low ES
tool	score	bet sa	ween mple	between cell-type
MCP-counter	arbitrary units			×
xCell	arbitrary units	(×

Deconvo	D Mutres Separating M, M, M, I M, M, I S, S, S, S, S, S, S, S, S, S, S, S, S, S	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
tool	score	between sample	between cell-type	
CIBERSORT	immune cell fractions	×	\checkmark	
CIBERSORT abs.	arbitrary units	√	\checkmark	
EPIC	cell fractions	1	\checkmark	
quanTlseq	cell fractions	1		
TIMER	arbitrary units	1	X 6	

FACS is a "gold standard" for comparing computational cell-type quantification methods.

Image credit: https://www.abcam.com/protocols/fluorescence-activated-cell-sorting-of-live-cells

FACS is a "gold standard" for comparing computational cell-type quantification methods.

Only 15 samples available!

Image credit: https://www.abcam.com/protocols/fluorescence-activated-cell-sorting-of-live-cells

Simulating bulk RNA-seq samples from single-cell data allows us to systematically assess the methods.

Schelker et al. (2017). Nature Communications, doi:10.1038/s41467-017-02289-3 Simulating bulk RNA-seq samples from single-cell data allows us to systematically assess the methods.

Schelker et al. (2017). Nature Communications, doi:10.1038/s41467-017-02289-3 Simulating bulk RNA-seq samples from single-cell data allows us to systematically assess the methods.

Schelker et al. (2017). Nature Communications, doi:10.1038/s41467-017-02289-3

Correlation true vs. predicted

Background predictions

Background predictions

Minimal detection fraction

We recommend EPIC and quanTlseq for general purpose deconvolution.

Beware of dendritic cell subtypes!

Background predictions are widespread among deconvolution-based approaches.

xCell is robust against background predictions (stat. enrichment test)

genes removed

Which method should I use?

- EPIC, quanTlseq (absolute scores, solid performance)
- MCP-counter (good for between-sample comparisons)
- xCell (no 'background predictions')

More observations

- We need signatures that address dendritic cell subtypes
- Background predictions can be addressed by identifying non-specific genes

Outlook

- More scRNA-seq data now available (200k+ cells)
- Cancer-type specific signatures?

Availability

- This talk \rightarrow
- The paper \rightarrow

grst.github.io/talks

Sturm et al. in the proceedings

Immunedeconv R package

Unified interface to methods

Reproducible Pipeline

Reproduce entire benchmark

•••

snakemake --use-conda

github.com/grst/immunedeconv

github.com/grst/immune_
 deconvolution_benchmark

Acknowledgements

INDEPENDENT DATA

Francesca Finotello

- Florent Petitprez
 Ligue contre le cancer,
 Paris
- Wolf H. Fridman, Cordeliers Research Centre, Paris
- Jitao David Zhang, Roche, Basel
- Jan Baumbach, Experimental Bioinformatics, TUM

We are hiring!

Markus Zettl

Markus List

Francesca Finotello

Tatsiana Aneichyk

Pieris Pharmaceuticals

Experimental Bioinformatics, TUM

exbio@wzw.tum.de

Division of Bioinformatics, Medical University of Innsbruck

<u>francesca.finotello@</u>
 <u>i-med.ac.at</u>

Supplementary Slides

b

performance measure — background prediction fraction — minimal detection fraction - zero

34

a

5

Cell type	Recommended	Overall	Abs.	No background
	methods	perf.	score	predictions
В	EPIC	++	++	+
	MCP-counter	++	-	-
T CD4+	EPIC	++	++	-
	xCell	++	l H	++
T CD4+ n.r.	quanTIseq	+	++	+
	xCell	+	-	++
T reg.	quanTIseq	++	++	-
	xCell	++	-	++
T CD8+	quanTIseq	++	++	
	EPIC	++	++	-
	MCP-counter	++	-	-
	xCell	+	-	++
NK	EPIC	++	++	+
	MCP-counter	++	-	-
Mac/Mono	xCell	-	++	
	EPIC	+	++	+
	MCP-counter	++	-	-
CAF	EPIC	++	++	+
	MCP-counter	++	-	-
Endo	EPIC	++	++	+
	xCell	++	-	++
DC	None of the methods can be recommended to estimate			
	overall DC content. MCP-counter and quanTIseq can			
	be used to profile myeloid DCs.			

dataset/method	subtype	reference
Schelker ¹	plasmacytoid DC	Identified in the single cell data using CD123 and CD303 marker genes ¹ which are pDC marker genes according to ⁶ .
Hoek ³	myeloid DC	primary human myeloid DC according to annotation on GSE64655
MCP-counter ⁹	myeloid DC	signature explicitly annotated as myeloid DC
CIBERSORT ¹⁰	monocyte-derived DC	"Monocytes isolated as above were cultured in RPMI with 10% heat-inactivated FBS, 1 × Pen/Strep, 2 mM L-glutamine, 10 mM HEPES, 1 mMsodium pyruvate, then differentiated into dendritic cells by 17 ng/ml IL4, and 67 ng/ml GMCSF for 5 days at 5 × 106 cells/ml." (GSE22886) ¹¹
quanTlseq⁵	myeloid DC	signatures derived from Hoek ³ data
EPIC ⁴	(no DC signature pr	ovided)
TIMER ¹²	monocyte-derived DC	training data is a mix of various monocyte-derived DCs from HPCA (See table S8 of ¹²)
xCell ¹³	myeloid DC	uses a combination of various, mostly myeloid, DC samples (personal communication with authors)

Certain cell-types are susceptible to spillover

Certain cell-types are susceptible to spillover

Spillover occurs between NK and CD8+ T cells

Spillover occurs between DCs and B cells

What causes spillover between DC and B cells?

	Simulated sample (single cell)	Pure sample (FACS)
CD4+ T ↔ CD8+ T		
$NK \leftrightarrow CD8 + T$		
$DC \leftrightarrow B$	✓	×

